MANSONIA VECTOR CONTROL: PROBLEMS AND POSSIBILITIES

H.H. Yap, Chow-Yang, Lee and N. L. Chong Vector Control Research Unit School of Biological Sciences Universiti Sains Malaysia 11800 Penang Malaysia

INTRODUCTION

FILARIASIS is a dreaded disease of mankind in the tropical and subtropical regions of Africa, Asia and America (Yap 1985). In the Southeast Asia region, Mansonia mosquitoes are the main vectors involved in the transmission of lymphatic filariasis which is caused by Brugia malayi. In 1991, Brugian filariasis accounted for 92% of the total filariasis cases (871) detected in Malaysia (Marzhuki et al. 1993).

The biology of Mansonia mosquitoes in relation to the transmission of filariasis has been well-reviewed by Wharton (1962). More recently, further studies on the ecological aspects and bionomics of Mansonia have also been reported (Chiang 1987, 1993; Chiang et al. 1984, 1988). In comparison with other common genera of mosquitoes of public health importance, information on the control of Mansonia has been scanty and scattered. This is reflected in the two reviews on Mansonia biology and control by Yap (1985) and Sucharit (1993).

This paper is a review of all the literature pertaining to the control of Mansonia vector mosquitoes and problems faced in control approaches, especially in the Southeast Asia region.

For ease of discussion, control approaches against the immature and adult stages are subdivided into five sections: insecticides, biological control, environmental modifications, personal protection and physical measures. A summary is presented in Table 1. Future prospects for the integration of Mansonia vector control in the overall approach to the control of Brugian filariasis are also discussed.

PROBLEMS ENCOUNTERED IN MANSONIA VECTOR CONTROL

Several aspects in the biology of Mansonia mosquitoes have contributed to difficulties and possibilities in Mansonia control. These aspects include: (1) The attachment of Mansonia immatures to the roots of diverse species of aquatic plants (Wharton 1962) in habitats of high organic pollution associated with vegetation cover. This condition would make the larvae less accessible to larvicides. However, a behavioural study conducted in Florida on Mansonia dyari and Mansonia titillans indicated that there was a daily periodic detachment of the larvae from its aquatic host (Bailey 1984). Such a phenomenon in Mansonia vectors such as Mansonia uniformis, Mansonia bonneae and Mansonia dives in this region have yet to be studied. Information on this phenomenon in local vectors will facilitate the proper usage of larvicides for Mansonia vector control (Yap 1985).

(2) The exophilic and exophagic feeding habits of most Mansonia adults (Gass et al. 1982, Chiang et al. 1988). Because of such a behaviour, residual insecticide-wall spraying in endemic areas would be less effective.

(3) The long flight ranges of Mansonia adults of up to several kilometers (Wharton 1962; Gass et al. 1983, Chiang et al. 1988, MacDonald et al. 1990). This tends to increase exposure of humans over a
wider area and also decrease the effectiveness of localized space spray with adulticides due to the migration of infected mosquitoes, and (4) The relatively long development period of Mansonia immatures of around 25-30 days (Wharton 1962, Foo 1985, Chiang 1987) may be advantageous when using larvicides.

CONTROL APPROACHES FOR MANSONIA VECTOR

Insecticides

Generally, insecticides used for the control of Mansonia vectors can be subdivided into larvicides and adulticides. Studies on the use of larvicides for Mansonia control began when Chapman (1955) conducted a laboratory test on 15 insecticides against field collected Mansonia dabitans. From this study, two organophosphates insecticides, i.e. parathion and EPN were found to be most effective. However, the above insecticides are not environmentally acceptable at present when sprayed in an open aquatic ecosystem due to their high toxicity to non-target organisms. Further laboratory bioassay using field collected immatures indicated that temephos (Abate®) and chlorpyrifos (Dursban®) were found to provide good results against Mansonia pertubans (Yap et al. 1968) and Mansonia uniformis (Yap & Hanapi 1976). Field studies further confirmed the efficacy of temephos against Mansonia larvae (Gass et al. 1985). In addition, laboratory and field evaluation of fenthion and cyfluthrin also showed adequate efficacy against Mansonia uniformis (Yap et al. 1994). More recently, etofenprox, a relatively new insecticide with exceedingly low mammalian toxicity was found to possess good larvicidal effect in the laboratory (Yap et al. 1995).

A novel method of controlling Mansonia larvae was recently suggested by Lee & Inder Singh (1992) and Lee & Chiang (1995). When chemical insecticides were introduced onto the leaves of water hyacinth, they were shown to be absorbed and transported by the leaves to the roots where they killed Mansonia larvae. However, this method of larval control has yet been proven in the field and the use of the chemical compounds is limited only to those with low toxicity to non-target organisms.

Earlier work on the control of adult Mansonia through the use of residual spraying of organochlorine insecticides such as DDT, dieldrin and BHC had been reported in the 1950s (Wharton 1955, Reid & Wharton 1956, Wharton & Santa Maria 1958, Wharton et al. 1958). However, the use of the above chlorinated hydrocarbon insecticides is considered to be environmentally unacceptable at present. Following a lapse of about two decades, Chang (1980) reported a preliminary field study on malathion thermal fogging for the control of Mansonia bonneae and Mansonia dives as a short-term control measure. However, Lee & Salleh (1990) were not able to reduce the Mansonia adult population in an open swamp area by thermal fogging using lambda-cyhalothrin. The laboratory efficacy of cyfluthrin against Mansonia and other mosquitoes of public health importance thorough the use of WHO standard adult residual test had also been reported (Vythilingam et al. 1992). More recently, Chang et al. (1993) reported that the incorporation of malathion ULV spray and pirimiphos-methyl residual spray against mosquitoes in an integrated control program which included drug treatment of patients with diethylcarbamazine citrate resulted in partial interruption of Brugia malayi transmission.
Biological control

A review concerning the use of microbial agents (microbial insecticides) for Mansonia vector control has been published recently (Foo 1994). The potential of using microbial agents such as *Bacillus thuringiensis* H-14 (*Bt* H-14) against Mansonia larvae in both laboratory and field conditions was first reported by Foo & Yap (1982, 1983). Subsequently, Chang et al. (1990a, 1990b) also conducted field studies using different formulations of *Bacillus thuringiensis* H-14 against larvae of *Mansonia bonneae*. In addition to *Bacillus thuringiensis* H-14, *Bacillus sphaericus* have been reported to give good larvicidal effect under laboratory condition (Cheong & Yap 1985, Lee 1988, Yap et al. 1988). Field studies further confirmed the larvicidal properties of *Bacillus sphaericus* (Foo 1985, Pradeep Kumar et al. 1988, Yap et al. 1991). Besides bacteria, the fungus *Tolypocladium cylindrosporum* was also found to have potential as a biological control agent against *Mansonia lamae* (Serit & Yap 1984). Studies on turbellarian worms (*Dugesia* sp. and *Mesostoma* sp.) and fish as predators for *Mansonia* larvae have also been conducted (Burton 1960, Ridzuan 1988, Loh et al. 1992, Loumbibos et al. 1992, Yap et al. 1993). Laboratory efficacy of mermithid nematodes (*Romanomermis culicivorax* and *Romanomermis iyengari*) against *Mansonia* immatures has also been reported (Daim 1988).

Environmental modification

With the knowledge that *Mansonia* larvae attach themselves to the roots of aquatic plants for respiration, the killing of host plants by the use of herbicides has been attempted with satisfactory results in control of the vectors (Chow 1953, Chow et al. 1955). However, the negative environmental impact from the use of herbicides in an open aquatic ecosystem precludes the acceptance of this approach.

In India, in the Shertallai part of Kerala State, aquatic plant species in the genera *Eichhornia*, *Pistia* and *Salvinia* were periodically removed from ponds and canals, and used as manure for coconut trees. In addition, an incentive in the form of composite fish culture was given to the people who remove these plants from their ponds. This further reduced the host plants for the breeding of *Mansonia* (Rajagopalan et al. 1990).

In addition, Hoedojo & Oemijati (1972) reported the absence of *Brugian filariasis* and its main vector, *Mansonia indiana* in West Java and attributed this to urbanization and environmental changes resulting from land use.

Personal protection

Repellent soap formulated with DEET (N,N-diethyl-3-methylbenzamide) and permethrin has been reported to give satisfactory personal protection against *Mansonia* bites in the field for up to eight hours (Yap 1986, Abu Hassan & Narayanan 1992). In addition, repellent bars (MosbarR) and DEET impregnated anklets and wristbands have also been reported to confer good protection in the field (Chiang et al. 1990, Chiang & Eng 1991). Besides repellents, mosquito coils had also been shown to give adequate protection against adult *Mansonia* mosquitoes in the laboratory (Yap & Chung 1987). More recently, a field study conducted in Penaga, Penang using cattle bait further confirmed the potential of mosquito coils for protection against *Mansonia* mosquitoes (H H Yap, unpublished). Other household insecticide products (eg aerosol, mosquito mats and electric liquid vaporizers) have also been shown to give good control against *Mansonia* mosquitoes in the laboratory (H H Yap, unpublished data).
Physical measures

The use of acoustical traps against *Mansonia* adult male mosquitoes was studied by Kanda and a group of scientists from the Institute for Medical Research, Kuala Lumpur, Malaysia in the late 1980s. Kanda *et al.* (1987, 1988) reported that sound frequency of 330 and 350 Hz together with dry ice and a hamster attracted and trapped large numbers of *Mansonia* in two experimental areas in Malaysia.

CONCLUSION

The success of mass drug treatment for the control of *Brugian filariasis* in many areas may have contributed to the lack of interest and impetus in research activities in the control of *Mansonia* vector (Mak & Yong 1986; World Health Organization 1992) when compared to those for the control of other vector mosquitoes including *Aedes, Anopheles* and *Culex* species. Nevertheless, the information accumulated thus far on *Mansonia* vector control points to the feasibility of including the vector control component into the overall integrated approach of using both drug treatment and vector control for *Brugian filariasis* control. This approach is obviously suitable for locations with *Brugian filariasis* transmission which have large numbers of animal reservoirs and *Mansonia* vectors, and where chemotherapeutic control alone has been proven ineffective (Lim & Mak 1983).

The biology of the *Mansonia* mosquitoes further indicates that larviciding may be a better approaches because of their longer immature stage. The use of adulticide (residual and space sprays) should only be considered in epidemic situation where rapid reduction of the infective mosquito population is required. Moreover, household insecticide products especially mosquito coils should be incorporated in the overall *Mansonia* vector control program.

In conclusion, a coordinated and intensified effort in the research activities on *Mansonia* vector control utilizing various control approaches (chemical and bio-control agents, reduction of man-vector contact source reduction) should be conducted. The ultimate aim is to incorporate *Mansonia* vector control as a viable and important component of the overall strategy for *Brugian filariasis* control.

ACKNOWLEDGEMENTS

The authors would like to thank: (1) The Dean, School of Biological Sciences and the Coordinator, Vector Control Research Unit, Universiti Sains Malaysia for providing the necessary support for the preparation of the manuscript, (2) The Malaysian Government IRPA Research Programme, and (3) Miss C L Tang and Norhayati Ismail for administrative assistance.

REFERENCES

Table 1: Summary of literatures concerning the control of Mansonia mosquitoes.

<table>
<thead>
<tr>
<th>Control approaches</th>
<th>Method</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Insecticides</td>
<td>Immature stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory bioassay and field evaluation (15 insecticides)</td>
<td>Chapman (1955)</td>
</tr>
<tr>
<td></td>
<td>Laboratory bioassay (several insecticides including DDT, temophos & chlorpyrifos)</td>
<td>Yap et al. (1968)</td>
</tr>
<tr>
<td></td>
<td>Laboratory bioassay (several insecticides including DDT, temophos & chlorpyrifos)</td>
<td>Yap & Hanapi (1976)</td>
</tr>
<tr>
<td></td>
<td>Field evaluation (temophos)</td>
<td>Gass et al. (1985)</td>
</tr>
<tr>
<td></td>
<td>Laboratory bioassay (fenthion & cyfluthrin)</td>
<td>Yap et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>Laboratory bioassay (etofenprox)</td>
<td>Yap et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>Adult stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory evaluation (chlorinated hydrocarbons)</td>
<td>Wharton (1955)</td>
</tr>
<tr>
<td></td>
<td>Field evaluation (chlorinated hydrocarbon)</td>
<td>Reid & Wharton (1956)</td>
</tr>
<tr>
<td></td>
<td>Field evaluation (chlorinated hydrocarbon)</td>
<td>Wharton & Santa Maria (1958)</td>
</tr>
<tr>
<td></td>
<td>Field evaluation-space spray (chlorinated hydrocarbon)</td>
<td>Wharton et al. (1958)</td>
</tr>
<tr>
<td></td>
<td>Field thermal fogging (malathion)</td>
<td>Chang (1980)</td>
</tr>
<tr>
<td></td>
<td>Laboratory evaluation (DDT, decamethrin & chlorpyrifos)</td>
<td>Lee et al. (1986)</td>
</tr>
<tr>
<td></td>
<td>Field thermal fogging (lambdacy holothrin)</td>
<td>Lee & Salleh (1990)</td>
</tr>
<tr>
<td></td>
<td>Laboratory evaluation (cyfluthrin)</td>
<td>Vythilingam et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>Field ULV (malathion) & residual spray (pirimiphos-methyl)</td>
<td>Chang et al (1993)</td>
</tr>
</tbody>
</table>
b. Biological control

i. Microbial agents

- *Bacillus thuringiensis* H-14 (laboratory evaluation)
- *Bacillus thuringiensis* (field evaluation)
- *Bacillus sphaericus* strain 1593 (laboratory evaluation)
- *Bacillus sphaericus* (laboratory evaluation)
- *Bacillus sphaericus* (field evaluation)
- *Bacillus sphaericus* strain 1593, 2297 and 2362 (laboratory evaluation)
- *Bacillus sphaericus* (review paper)
- *Bacillus sphaericus* strain 2362 (field evaluation)
- *Bacillus thuringiensis* and *Bacillus sphaericus* (simulated field)
- *Bacillus thuringiensis* (H-14) (field studies)
- *Clostridium bifermentans* (laboratory evaluation)
- *Bacillus thuringiensis* and *Bacillus sphaericus* (Review paper)

ii. Fungi

- *Tolypocladium cylindrosporum* (laboratory evaluation)

iii. Predators

- Fish (laboratory evaluation)
- Fish (simulated field evaluation)
- Turbellarian *Dugesia* sp.
- Turbellarian *Mesostoma* sp.
- General predators

- Foo & Yap (1982)
- Foo & Yap (1983)
- Cheong & Yap (1985)
- Lee (1988)
- Pradeep Kumar *et al.* (1988)
- Yap *et al.* (1988)
- Yap (1990)
- Yap *et al.* (1991)
- Chang *et al.* (1990a)
- Chang *et al.* (1990b)
- Lee & Seleena (1990)
- Foo (1994)
- Serit & Yap (1984)
- Ridzuan (1988)
- Lounifbos (1992)
- Loh *et al.* (1992)
- Yap *et al.* (1993)
- Parsons & Wilson (1982)
<table>
<thead>
<tr>
<th>Control approaches</th>
<th>Method</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Environmental modifications</td>
<td>Herbicides against host plant</td>
<td>Chow (1953)</td>
</tr>
<tr>
<td></td>
<td>Herbicides against host plant</td>
<td>Chow et al. (1955)</td>
</tr>
<tr>
<td></td>
<td>Urbanization & land use</td>
<td>Hoedojo & Oemijati (1972)</td>
</tr>
<tr>
<td></td>
<td>Manual removal of host plants</td>
<td>Rajagopalan et al. (1989)</td>
</tr>
<tr>
<td>d. Personal Protection</td>
<td>Repellent soap containing DEET & permethrin (field evaluation)</td>
<td>Yao (1986)</td>
</tr>
<tr>
<td></td>
<td>Repellent soap containing DEET & permethrin (field evaluation)</td>
<td>Abu Hassan & Narayanan (1992)</td>
</tr>
<tr>
<td></td>
<td>Repellent bar & DEET impregnated anklets & head bands</td>
<td>Chiang et al. (1990, 1991)</td>
</tr>
<tr>
<td></td>
<td>Mosquito coil (laboratory evaluation)</td>
<td>Yap & Chung (1987)</td>
</tr>
<tr>
<td>e. Physical measures</td>
<td>Acoustical trap (sound trapping)</td>
<td>Kanda et al. (1987, 1988)</td>
</tr>
</tbody>
</table>

